

Luminescence properties of new phosphor Ca₉Tb(PO₄)₇ doped with Eu³⁺

Irene Carrasco Ruiz Luminescent Materials Group. UNIVR

LUMINET Meeting Aveiro 2016

MOTIVATION

New environmentally friendly and energy efficient lighting devices are strongly required: solid state lighting.

Blue and near UV LEDs led to the development of devices capable to produce white light in a reliable and efficient way based on inorganic phosphors

Red phosphors for LEDs are relatively difficult to develop: New approaches may be useful.

Energy transfer processes are very interesting from both a fundamental and an applied point of view and are crucial in many technological applications. Tb³⁺ is a very good sensitizer for Eu³⁺ and both ions exhibit absorption bands in the UV: Tb³⁺ - Eu³⁺ materials are very interesting and promising for w-LEDs

Whitlockite-type structure

Rhombohedral crystal structure Cell volume: 3533 Å³ Space group R3c Very flexible structure for Ln³⁺ doping

Four possible cation sites for the Ln³⁺ dopants in the host, due to the similarity between the ionic sizes of the Ca²⁺ and most of Ln³⁺ ions. For Tb³⁺ and Eu³⁺ three crystal sites are partially occupied by both Ca²⁺ and Ln³⁺

Used in scintillation applications , X-ray-excited long-lasting phosphorescence materials (for application in biological imaging)

OBJECTIVE

Study the luminescent properties of various whitlockite phosphors doped with europium in order to investigate the Tb-Eu energy transfer process

METHODOLOGY

- Synthesis of various whitlockite phosphors via a high temperature solid state reaction
 - RT luminescence experiments

EMISSION

EXCITATION

The spectra show evidence of ⁵D₃ - ⁵D₄ cross relaxation Evidence of weak Tb-Eu energy transfer

DECAY KINETICS

Non exponential decay curves

Decay constant slightly shortens in the Eu-doped samples Same decay constant for neat Eu and Tb-Eu samples when exciting at 393 nm

Rise at short times when exciting into 377 nm

Decay constant slightly shortens in concentrated Tb compounds compared to diluted one Same decay constant for concentrated and diluted Eu compounds

Weak or neglectable energy migration along Ln³⁺ ions

Energy migration in the Tb³⁺ subset of ions

For $Ca_9Tb(PO_4)_7$ the critical distance of dipole-dipole energy transfer was evaluated using the equation:

$$R_c^6 = 3 \cdot 10^{12} f_d \int \frac{f_s(E) F_s(E)}{E^4} dE$$
$$f_d(Tb^{3+}) = 3 \cdot 10^{-7}$$

 $R_c \approx 7.8$ Å is estimated. If compared with the minimum Tb-Tb distance of about 5.2 Å, a fast migration is predicted, but the experimental results show only a weak effect when comparing diluted and neat Tb compounds

Eulytite $(Tb^{3+5}D_4 \text{ emission})$ $Sr_3Y_{0.99}Tb_{0.01}(PO_4)_3 \quad \tau_d = 2.98 \text{ ms}$ $Sr_3Tb_3(PO_4)_3 \quad \tau_d = 2.68 \text{ ms}$ $Sr_3Tb_{0.9}Eu_{0.1}(PO_4)_3 \quad \tau_{1/e} = 0.20 \text{ ms}$

Tb-Eu energy transfer enhanced via Tb-Tb energy migration

I.Carrasco et.al, Opt. Mat. 48 (2015) 252-257

M. Bettinelli et.al, Opt. Mat. 33 (2010) 119-122

Compound	Rc (Å)	d (Å)
Ca ₃ Tb ₂ Si ₃ O ₁₂	7.4	3.1
Sr ₃ Tb(PO ₄) ₃	7.6	4
Ca ₉ Tb(PO ₄) ₇	7.8	5.1

Why the behaviour of Tb/Eu is so different in the whitlockite?

Ca₃Tb₂Si₃O₁₂ (Silico-carnotite)

Sr₃Tb(PO₄)₃ (Eulytite)

Ca₉Tb(PO₄)₇ (Whitlockite)

Cell volume:1038 Å³ Three available crystal sites for Tb ions Cell volume: 1033 Å³ The pairs of cations are disordered on a single crystallographic site Cell volume: 3533 Å³ Four possible cation sites for the Tb ions in the host

No clear explanation: various hypothesis

CONCLUSIONS

Slight change in the emission colour of the material by the addition of Eu³⁺

Evidence of weak Tb³⁺-Eu³⁺ energy transfer and Tb³⁺-Tb³⁺ energy migration processes

The mechanisms involved in the energy transfer (Tb-Tb and Tb-Eu) process are not clear

FUTURE WORK

Further analysis of the measured data to better understand the phenomena (exploration of suitable models to describe the processes)

Thank you for your attention

